```
Mineralogical transformations controlling acid mine drainage
 1
      chemistry
 2
 3
 4
 5
      T. Peretyazhko*<sup>1</sup>, J. M. Zachara<sup>1</sup>, J.-F. Boily<sup>1</sup>, Y. Xia<sup>1</sup>, P. L. Gassman<sup>1</sup>, B. W. Arey<sup>1</sup>, W.
 6
      D. Burgos^2
 7
 8
 9
10
11
12
13
14
15
      <sup>1</sup>Pacific Northwest National Laboratory, Richland, WA 99354
16
      <sup>2</sup> Department of Civil and Environmental Engineering, The Pennsylvania State
17
18
      University, PA, 16802
19
20
21
22
23
24
25
26
      To be submitted: Chemical Geology
27
28
29
30
31
32
      * Corresponding Author: Pacific Northwest National Laboratory, PO Box 999, MS K8-
33
34
         96, Richland, WA 99354; Phone: (509) 376-1529; Fax: (509) 376-3650; E-mail:
35
         tetyana.peretyazhko@pnl.gov.
```

36 Abstract

37 The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was 38 studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located 39 in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning 40 electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were 41 used to identify and characterize Fe(III) phases. The mineralogical analysis revealed 42 schwertmannite and goethite as the principal Fe(III) phases in the sediments. 43 Schwertmannite particles occurred as sub-micron sized spheroids. Their transformation 44 into goethite occurred at the GB site where poorly-crystallized goethite rich in surface-45 bound sulfate was initially formed. In contrast, no schwertmannite transformation 46 occurred at the FR site. The resulting goethite in GB sediments was also of spherical 47 morphology and resulted from an *in situ* phase transformation involving the conversion 48 of bulk-bound schwertmannite sulfate ions into goethite surface complexes. Chemical 49 extractions moreover showed that the poorly-crystallized goethite particles were subject 50 to further crystallization accompanied by sulfate desorption. Changes in sulfate 51 speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. 52 53

Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and aerobic AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same

59	sediment. XRD measurements revealed that schwertmannite transformed into goethite in
60	GB and FR sediments during laboratory incubation. The incubation experiments
61	demonstrated that schwertmannite transformation controlled AMD water chemistry under
62	no-flow, batch conditions.
63	
64	

65 Keywords: acid mine drainage, schwertmannite, mineralogical transformations

1. Introduction

67	Acid mine drainage (AMD) is produced by biotic and abiotic oxidation of sulfide
68	minerals (ex., pyrite, FeS ₂), and the subsequent release of large amounts iron and sulfuric
69	acid (H ₂ SO ₄) to aqueous systems (Bigham et al., 1996; Cravotta, 2008; Malmstrom et al.,
70	2006). Contamination of natural waters with AMD leads to severe acidification and
71	release of toxic elements from mining residues; and induces the erosion, sedimentation
72	and precipitation of Fe(III) minerals (Bigham and Nordstrom, 2000). The extent of
73	damage depends on different controlling factors including the size and buffering capacity
74	of the receiving stream as well as the biogeochemical properties of the AMD (Bigham
75	and Nordstrom, 2000). The physico-chemical, microbiological, and mineralogical
76	processes involved in AMD must therefore be thoroughly understood to evaluate and
77	mitigate their impacts to the environment.
78	Iron(III) precipitates play a determining role in AMD water quality (Acero et al.,
79	2006; Sullivan and Bush, 2004). For example, the type of Fe(III) mineral formed
80	determines the amount of acidity developed (Dold and Fontbote, 2001). Iron(III) minerals
81	usually found in AMD include jarosite [KFe ₃ (SO ₄) ₂ (OH) ₆], goethite [α -FeOOH],
82	ferrihydrite [Fe ₅ OH ₈ ·4H ₂ O] and schwertmannite [Fe ₈ O ₈ (OH) _{8-2x} (SO ₄) _x ·nH ₂ O where $1 \le x$
83	\leq 1.75] (Bigham et al., 1996; Gagliano et al., 2004; Hochella et al., 1999; Murad and
84	Rojik, 2005; Schwertmann et al., 1995). Jarosite forms at pH<3 and high sulfate
85	concentrations, while ferrihydrite and goethite precipitate at circumneutral pH
86	(Schwertmann and Carlson, 2005). Schwertmannite, on the other hand, is a most common
87	phase precipitating between pH 3 and 4 (Bigham et al., 1996). Schwertmannite acts as an
88	important sink for minor elements (e.g., As, Hg, Pb, Cr) through adsorption or

89	coprecipitation reactions (Bigham and Nordstrom, 2000; Carlson et al., 2002; Espana et
90	al., 2006; Fukushi et al., 2003; Regenspurg and Peiffer, 2005). It can also undergo
91	hydrolysis reactions and consequently be responsible for acidity increase in aqueous
92	environments (Dold and Fontbote, 2001; Sullivan and Bush, 2004).
93	Numerous studies demonstrate that goethite is often present in AMD precipitates
94	dominated by schwertmannite (Bigham et al., 1996; Gagliano et al., 2004; Murad and
95	Rojik, 2005; Schwertmann and Carlson, 2005). Schwertmannite is apparently metastable
96	with respect to goethite, and transforms to this more stable phase by hydrolysis within
97	months to years (Bigham et al., 1996; Gagliano et al., 2004; Murad and Rojik, 2005;
98	Schwertmann and Carlson, 2005) through the reaction:
99	$Fe_8O_8(OH)_{5.5}(SO_4)_{1.25} + 2.5H_2O \rightarrow 8FeOOH + 2.5H^+ + 1.25SO_4^{2-}$ (1)
100	Limited evidence suggests that rate of transformation depends on solution physico-
101	chemical properties, increasing with pH and temperature (Jönsson et al., 2005;
102	Schwertmann and Carlson, 2005), and decreasing with increasing concentrations of
103	sulfate and dissolved organic carbon (Knorr and Blodau, 2007). Recent research has
104	shown that schwertmannite transformation also occurred under anoxic conditions and
105	Fe(II)-catalyzed conversion of schwertmannite to goethite is very rapid (Burton et al.,
106	2008).
107	In this communication we compare the mineralogy of two sites [Gum Boot(GB)
108	and Fridays-2(FR)] that exhibit comparable source AMD discharge compositions, but
109	variable rates of downstream oxygenation, microbiological Fe(II) oxidation, and Fe
110	precipitation rates as described by Senko et al., (2008). A primary goal was to investigate
111	whether relationships existed between the current phase distribution, mineralogic

112	transformation products, and the downstream water composition of the AMD that was
113	different between sites. For this purpose we characterized the morphology, mineralogy,
114	and chemical composition of AMD precipitates with distance from the source terms, and
115	with accumulation depth, using chemical extractions, X-ray diffraction (XRD), and
116	scanning electron microscopy (SEM) with elemental analysis. Additionally, the bulk and
117	surface speciation of sulfate was determined on field-derived AMD precipitates using
118	Fourier- transform infrared spectroscopy (FTIR), with multi-component asynchronous
119	correlation analysis. Laboratory batch incubation experiments were performed with
120	schwertmannite-containing GB and FR sediments and AMD waters of different
121	composition to investigate temporal relationships between water chemistry and AMD
122	mineralogy. We demonstrate that mineralogic transformations of initial AMD
123	precipitates are more closely associated with the evolving surface speciation of sulfate,
124	rather than through the catalytic action of Fe(II).
125	

126 **2. Ma**

2. Materials and methods

127 2.1. Field site and sampling

Two AMD sites were chosen for this study (Senko et al., 2008). The Gum Boot (GB) system is located in McKean County, Pennsylvania (41° 41' 02" N; 78° 29' 37" W), and the Fridays-2 (FR) system is located in Clearfield County, Pennsylvania (41° 14' 34" N; 78° 32' 28" W). At the GB site, AMD emerges at the crest of a hill and flows approximately 18 m downhill in 5 mm sills before flowing underground, reemerging at a point approximately 48 m downhill from the source. Discharge waters enter a pool at the foot of the hill 127 m from the source that subsequently discharge into nearby Gum Boot

135	Run. Water and surface sediment samples were collected in February and May 2006, at
136	discrete sampling points at 0 m and downstream of the AMD emergence point 2, 9, 15,
137	60, and 127 m (labeled GB1-GB6). Sediment samples at multiple depths were collected
138	in May 2006 at points 0, 2 and 9 m.
139	AMD emerges at a former mine entrance at the FR site that flows in sheets
140	(approximately 5 mm deep) approximately 10 m before entering an adjacent unnamed
141	creek. Water and surface sediment samples were collected in February 2006 at discrete
142	sampling points 0 m (the AMD source, FR1), 2, 8 and 10 m downstream from the AMD
143	emergence point. Two additional surface samples were collected at both sites, GB1 and
144	FR1, in July 2006; these samples were used in the incubation experiments (see Section
145	2.3, "Sediment incubation"). Surface sediments were collected from the top 2 cm of
146	sediment into 50-ml sterile centrifuge tubes. Sediment depth columns were collected
147	using stainless steel split spoons that were driven into AMD sediment.
148	
149	2.2. Sediment characterization
150	2.2.1 Extractions and XRD Analyzes
151	Sediments samples were air-dried and sieved (<2 mm) prior to characterization and
152	incubation.
153	Ammonium oxalate extraction in the absence of light was performed on each AMD
154	sediment (Bigham et al., 1990; Gagliano et al., 2004; Regenspurg et al., 2004). A 50 mg
155	sediment sample (six replicates) was mixed with ammonium oxalate reagent (28 g/L

- ammonium oxalate + 15 g/L oxalic acid solution, pH \sim 2.7). Samples were shaken in the
- 157 dark for 4 hrs, then centrifuged (3000 rpm, 10 min) and filtered (<0.22 μm). This

158	extraction dissolves poorly-crystalline Fe(III) oxides (ferrihydrite, schwertmannite) in
159	presence of more insoluble crystalline Fe (III) oxides (goethite, hematite) (Cornell and
160	Schwertmann, 2003). Sulfate-rich AMD goethite of poor crystallinity can also be
161	partially dissolved by acid ammonium oxalate (Kumpulainen et al., 2007).
162	The total dissolution of Fe(III) precipitates was performed using 6 M HCl (Gagliano
163	et al., 2004; Regenspurg et al., 2004). A sediment sample of 50 mg (six replicates) was
164	added to 10 mL 6 M HCl. Samples were shaken for 48 hrs, then centrifuged and filtered.
165	Sediment extractions were carried out at pH 10 to evaluate the amount of surface
166	bound sulfate (Kawano and Tomita, 2001). The efficiency of this extraction was
167	evaluated using two sediment samples [GB1 (July) and FR1 (July)] that were dominated
168	by schwertmannite (Fig. S1). Approximately 50-60 % of S_{HCl} (HCl-extractable sulfate)
169	was extracted after 10 min [samples were mixed with pH 10 buffer (NH4OH/NH4Cl; 7%
170	NH_4OH , 1% NH_4Cl , 92% H_2O) and immediately centrifuged for 10 min], and up to 80%
171	of S _{HCl} was extracted after 24 hrs (Table S1). X-ray diffraction measurements revealed no
172	change after 10 min of pH 10 extraction. The goethite 110 and 111 peaks, however,
173	became more pronounced after 24 hrs extraction (Fig. S1). Therefore, a 10 min extraction
174	was applied to estimate the amount of adsorbed sulfate in order to avoid any structural
175	changes to AMD mineral phases. For the extraction, 100 mg of sediment (six replicates)
176	was added to 10 mL of pH 10 buffer. The samples were well mixed, immediately
177	centrifuged for 10 min at 3000 rpm, and filtered. The extracted solutions were analyzed
178	for Fe and S by ICP-AES. We assumed that all S extracted from the sediment samples
179	was present in the form of sulfate (hereafter denoted as S), as documented in other studies
180	of AMD sediments (Jönsson et al., 2005).

181 Powder X-ray diffraction patterns of the sediments were recorded using a high-

182 resolution Ω-2Θ Four-Circle X-ray Diffractometer (Philips X'Pert MRD PRO, Philips

183 Co., Sunnyvale, CA). Intensities were measured with a 0.02° step size and 2 s counting

184 time per step.

185 2.2.2. SEM

186 Whole mount samples were prepared for SEM imaging by fixation to carbon tape.

187 Air-dried sediments were also fixed with EpoThin epoxy (Buehler) to prepare thin

188 sections. Samples were dried overnight, cemented to quartz optical grade microscope

189 slides (25.4 mm x 25.4 mm x 1 mm, SPI), sectioned [Isomet 1000 diamond blade thin

190 sectioning saw (Buehler) with Isocut fluid] and polished [aluminum oxide sand paper,

191 TEXMET 1000 (Buehler) and 1 micron diamond polish (Metadi II, Buehler)]. Imaging
192 and EDS analysis were performed using a LEO82 field emission SEM operating at 3 kV
193 fitted with backscattered and secondary electron detectors, coupled with an Oxford EDS

194 system.

195 2.2.3 FTIR

196 The FTIR of the GB samples were collected as a function of distance from the AMD 197 source (GB1, GB3, GB5) and as a function of depth (GB1D depth samples) using the 198 KBr technique. The measurements were carried out on a Bruker IFS 66v/S FTIR 199 spectrometer, equipped with a Globar source, KBr beam splitter, MCT detector and 200 OPUS operating software. Each spectrum was derived from 512 co-added scans collected in transmission mode in the 2000–800 cm⁻¹ range with a spectral resolution of 4 cm⁻¹. All 201 202 spectra were expanded to a Two-Dimensional Asynchronous correlation map (Noda and 203 Ozaki, 2004) using the code of Boily and Ilton (2008). This map allowed identification of

the precise positions of the various S-O stretching vibration bands of sulfate associated
with various Fe(III) minerals. All calculations and mapping procedures were performed
with Matlab (The Mathworks, Inc.).

207 The spectra were used to document changes in (1) the bulk and surface speciation of 208 sulfate (S-O stretching vibrations) and (2) the mineralogical compositions as a function of 209 distance and depth from the AMD source. Our interpretations are supported by the 210 results of an unpublished study in which we followed the effects of pH and dehydration 211 on the speciation of bulk and surface-bound sulfate ions in synthetic schwertmannite. Our 212 study shows that dehydration does not considerably affected band positions, although it 213 does promote the formation of a minor bisulfate component. The pH dependence of the 214 spectra of schwertmannite were in fact highly comparable to in situ measurements of 215 Jönsson et al. (2005) with three dominant forms of sulfate that will be further discussed in 216 Section 3.2.3.

217

218 2.3. Sediment incubation

Incubation experiments (310 d) were performed to investigate transformations of metastable mineral phases in the sediment, and associated changes in AMD water chemistry. The <2 mm size fraction of the air-dried GB1 (July) and FR1 (July) samples were used in two series of sediment incubations, one with GB4 water and another with GB6 water. The sediments contained mainly schwertmannite with traces of goethite by XRD (Fig. S1, Table 1), and displayed similar Fe and S contents (Table 1). The N₂-BET specific surface areas were 190 m²/g (GB1) and 180 m²/g (FR1), with pore sizes of less

226	than 20 Å. The two waters used for incubation had different compositions (Table S2);
227	GB4 was more acidic, and contained higher concentrations of Fe, S and other elements.
228	Sediment suspensions were prepared by mixing 10 g of the sediments with 200
229	mL of AMD water in 250-mL plastic bottles. Two replicates were prepared for each
230	treatment [GB1 sediment + GB4 water (GB1s_GB4w), GB1 sediment + GB6 water
231	(GB1s_GB6w), FR1 sediment + GB4 water (FR1s_GB4w), and FR1 sediment + GB6
232	water (FR1s_GB6w)]. pH was measured at selected time points, and suspension
233	subsamples were collected and centrifuged (3000 rpm, 10 min) for phase separation. The
234	resulting aqueous phase was analyzed for Fe and S by ICP-AES. The sediment samples
235	were air-dried, and then extracted with ammonium oxalate and pH 10 buffer.
236	
237	2.4. Thermodynamic calculations
238	Saturation indices were calculated for schwertmannite and goethite using
239	PHREEQC [Version 2.14, (Parkhurst and Appelo, 1999)]. The solubility product
240	constants (K_{sp}) were taken from Bigham et al (1996) for the two following reactions:
241	$Fe_8O_8(OH)_x(SO_4)_y + (24-2y)H^+ = 8Fe^{3+} + ySO_4^{2-} + (24-2y+x)/2H_2O;$
242	$\log K_{\rm sp} = 18.0 \pm 2.5$ (2)
243	FeOOH + 3H ⁺ =Fe ³⁺ + 2H ₂ O; log K _{sp} = 1.4 ± 0.01 (3)
244	From Eqns. 2 and 3 and the solubility products, the following stability relationships were
245	obtained
246	schwertmannite: $pa_{Fe3+} = -2.82 + 2.6 pH$ (4)
247	and goethite: $pa_{Fe3+} = -1.4 + 3pH$ (5)

248	where $pa_{Fe3+} = -\log a_{Fe3+}$, $a_{Fe3+} =$ the activity of Fe ³⁺ . Eqn. (4) was fixed with an average
249	$pa_{SO42-} = 2.84 \pm 0.16$ [calculated based on dissolved S, Fe and pH (Fig. 8) using
250	PHREEQC], $x = 4.8$ and $y = 1.6$ [Eqn. (2), Bigham et al, 1996]. Variation in pa_{SO42} .
251	didn't result in significant changes in the calculated paFe3+, therefore, the solubility line
252	of schwertmannite was calculated only with the average $pa_{SO42} = 2.84$.
253	
254	3. Results and discussion
255	3.1. AMD water chemistry
256	Seasonal variations in pH and dissolved concentrations of Fe(II) and S were not
257	significant at GB and FR sites. Representative distributions of aquatic physico-chemical
258	parameters measured in February are shown in Fig. 1. The aqueous phase of the GB
259	AMD contains ~0.9 mM Fe(II) at the emergence point (GB1). Iron(II) was however
260	completely removed from GB AMD waters after 15 m of downstream movement (Fig.
261	1b). Iron(II) removal from FR waters was less extensive due to different hydrological
262	conditions [flow rate (50 and 136 L/min at GB and FR, respectively (Senko et al., 2008);
263	distance from source to stream junction (127 and 10 m at GB and FR, respectively)].
264	Dissolved Fe(II) was detected at all FR sampling points with an average concentration of
265	2.2±0.2 mM (Fig. 1d). Average concentrations of dissolved S were higher at FR
266	(4.04±0.13 mM) than at GB (1.19±0.04 mM) (Fig. 1b,d). Dissolved S concentration did
267	not change significantly with distance from the source at both sites (Fig. 1b,d). The pH
268	varied between 4.5-4.1 (source) to 3.7-3.9 downhill at both AMD sites (Fig. 1a,c). Low

- 269 pH and high concentrations of dissolved S could be attributed not only to oxidation of

sulfide minerals (Bigham et al., 1996; Cravotta, 2008; Malmstrom et al., 2006) but to

271 post deposition mineralogical transformations in the AMD sediments.

272

273 3.2. AMD mineralogy

274 *3.2.1. XRD*

275 XRD analyses of the GB1-4 sediments collected in February downhill from the 276 source to the point where water flows underground revealed that goethite was the 277 dominant mineral. Goethite and quartz were present in GB 5-6 samples, i.e. downhill of 278 water reemergence (Table 1). The mineralogy of the GB samples collected in May and 279 July was significantly different for sites located in the source proximity (0-2 m). The 280 summer samples of both GB1 and GB2 were composed primarily of schwertmannite, 281 with some goethite in GB1 (Fig. 2a,b). No mineralogical changes were observed 282 downhill of this location, and goethite remained the principal phase (ex. GB3, Fig. 2c). 283 The presence of goethite together with schwertmannite, or goethite alone confirmed that 284 schwertmannite was metastable with respect to goethite in these systems (Bigham et al., 285 1996; Gagliano et al., 2004; Murad and Rojik, 2005; Schwertmann and Carlson, 2005). 286 Such changes in the initial precipitate mineralogy of the GB surface sediment might be 287 due to seasonal variations in aqueous composition, water flow rate, and/or temperature. 288 For instance, Kumpulainen et al (2007) observed that schwertmannite formed in spring 289 after snowmelt, but was partially transformed into goethite during warmer summer 290 months. Drying led to precipitate cementation that limited S and H⁺ diffusion, and 291 prevented full conversion of schwertmannite to goethite (Kumpulainen et al., 2007).

292 Cementation of the upper layers of mineral precipitates was common at both GB and FR293 sites.

294 The results of XRD analysis of the GB sediment depth series revealed no 295 mineralogical changes at the GB3D site, where goethite was the principal mineral (Table 296 1). X-ray diffraction analysis of the GB1D depth series showed that the upper 0.3 m was 297 composed primarily of schwertmannite with a trace amount of goethite (Fig. 3, Table 1). 298 The dominant phase in the two deepest samples of the GB1D column (0.6-1.1 m) was 299 goethite (Fig. 3). The middle portion of the GB1D column (0.35-0.55 m) represented a 300 transition zone where the proportion of schwertmannite decreased, as goethite increased 301 with depth. Similar transitions of schwertmannite to goethite with sediment depth were 302 observed for the GB2 site. To summarize, the XRD study of the GB sediments 303 demonstrated that mineralogical transformations occurred at both the surface and with 304 depth in the AMD sediments. 305 The dominant mineral phase of samples FR1 through FR4 (February) was 306 schwertmannite (Table 1). Along with schwertmannite, X-ray patterns of the FR4 307 displayed weak reflections of goethite (Table 1). The XRD data for the FR1 (July) 308 sample showed that schwertmannite was the principal Fe(III) phase. It, however, also 309 contained the traces of goethite. Comparison of the XRD data of the two FR samples 310 collected at different times (February and July) showed that schwertmannite was the 311 dominant phase, possibly due to slow mineralogical changes. 312

313 3.2.2. SEM

314	SEM analysis of GB1D (0-0.15 m, May) revealed that schwermannite formed
315	spherical particles of 1-2 μ m diameter (Fig. 4a,b) that were associated in larger
316	aggregates. The spherical particles of FR1 (February) schwertmannite had glassy,
317	molten-like surfaces (Fig. 4c,d). Characteristic filamentous features (Cornell and
318	Schwertmann, 2003) were not evident for any of the schwertmannite spherical particles
319	in GB1D (0-0.15 m, May) and FR1 (February). The "pin-cushion" or filamentous
320	morphology has been observed in loose precipitates but might be absent for
321	schwertmannite from cemented GB and FR sediments (Bigham and Nordstrom, 2000).
322	SEM analysis also showed that GB1 (February) goethite particles exist as spheres
323	(Fig. 4e,f) with morphology common to schwertmannite. Some of the goethite particles
324	were hollow inside, while schwertmannite particles were firm and filled (Fig. 4 a,b,e,f,
325	Fig. 5). The hollow goethite particles may form through dissolution of schwertmannite
326	inside the spheres (Yu et al., 2003); however, further investigation is required. The
327	spherical goethite morphology may be relict (pseudomorphic) from schwertmannite that
328	was preserved during recrystallization. Others have noted that goethite can adopt the
329	initial schwertmannite morphology and size (Jönsson et al., 2005; Schwertmann and
330	Carlson, 2005; Sullivan and Bush, 2004). This relationship suggests a 1:1 transformation
331	of schwertmannite aggregates into those of goethite (Schwertmann and Carlson, 2005).
332	Whole mount thin sectioned SEM analysis showed that the average Fe/S ratios of
333	GB1D (0-0.15 m, May), FR1 (February) and GB1 (February) were 8 \pm 3, 9 \pm 2 and 21 \pm
334	5, respectively (Fig. 5). The Fe/S ratios for the GB1D (0-0.15 m, May) and FR1
335	(February) samples were within the range of that reported for schwertmannite (5.3-8,
336	Bigham et al 1990).

3.2.3. FTIR

339	All GB samples exhibited the characteristic in-plane (δ_{OH}) and out-of-plane (γ_{OH})
340	deformation modes of goethite at ~900 and ~800 cm ⁻¹ (Fig. 6), respectively, consistent
341	with the XRD analyses showing the importance of this phase. The O-H stretching region
342	(not shown) also displayed the important \sim 3100 cm ⁻¹ band of goethite. The O-H
343	stretching region in the GB1D samples (0-0.55 m) revealed a secondary feature centered
344	at \sim 3400 cm ⁻¹ arising from schwertmannite, an observation consistent with the XRD
345	analyses (Fig. 3). The infrared data are, as a whole, consistent with the XRD analyses and
346	confirm the presence of both goethite and schwertmannite in the sediments.
347	The spectra of the sediment samples collected as a function of depth (GB1D
348	sediments) and distance from the AMD source (GB1, GB3, GB5) were used to generate
349	an asynchronous 2D correlation map to identify the important sulfate vibrational modes.
350	The resulting map (Fig. 7c) reveals peaks at 1215, 1135, 1088, 1065, 1010 and 985
351	cm ⁻¹ resulting for symmetric and asymmetric S-O stretching vibrations of sulfate
352	molecules. These modes, which are identified for sediment sample GB1D (0.35-0.55 m)
353	(Fig. 7b) are comparable to those of the pure component spectra for three predominant
354	mineral-bound sulfate geometries (Fig. 7a) that were resolved in another study from our
355	group (unpublished). The 1215, 1135 and 985 cm ⁻¹ bands correspond to the C_{2v} geometry
356	of sulfate [that is, a sulfate bidentate complex (Peak et al., 1999) in the schwertmannite
357	structure and/or at the Fe(III) oxide surface, and/or strongly hydrogen-bonded complexes
358	(Majzlan and Myneni, 2005)]. The 1135, 1065 and 985 cm ⁻¹ bands arise, on the other
359	hand, from sulfate surface complexes of C_{3v} symmetry [a monodentate sulfate complex

360	(Peak et al., 1999) at the Fe(III) oxide surface]. The presence of the both sets of bands
361	therefore denote the existence of both types of surface complexes in the AMD Fe(III)
362	precipitates. A third complex that is hydrogen-bonded or physisorbed (T _d , Peak et al.
363	1999; Jönsson et al. 2005) is also present.
364	The GB1 sediment exhibits the strongest degree of v_3 splitting and therefore the
365	strongest proportion of bidentate sulfate complexes of C_{2V} symmetry (Fig. 6a). A
366	decrease in v_3 splitting occurs with distance from the AMD source, implying conversion
367	of bidentate C_{2V} complexes to monodentate C_{3V} -type complexes on the goethite surface.
368	Similar to GB surface samples (Fig. 6a), the speciation of sulfate as a function of
369	sediment depth also exhibits a decrease in the intensity of the high-energy v_3 band,
370	denoting a change from the C_{2V} symmetry of the schwertmannite-bound sulfate complex
371	at the surface of GB1D to a C_{3V} symmetry for sulfate bound to the surface of goethite
372	particles present in the deeper sediments (Fig. 6b). Going from the surface [GB1D (0-
373	0.15 m)] to deeper sediments [GB1D (0.35-0.55 m) and GB1D (0.9-1.1 m], also increases
374	the relative importance of goethite bands (e.g. the in-plane and out-of-plane) relative to
375	the area of the S-O stretching area, a result that is consistent with the EDS spectra of Fig.
376	5 in terms of the Fe/S ratios and XRD results (Fig. 3).
377	
378	3.3. Chemical extractions of the AMD sediments

The amount of oxalate extracted Fe from the GB (February) surface samples decreased from 94 % to 2 % of Fe_{HCl} downhill from the emergence point due to an increase in goethite crystallinity (Table 1). The concentration of Fe_{HCl} decreased along the profile as well, through dilution of the Fe(III) phases with quartz (Table 1). Similarly, the

383	S content decreased with distance from the source (Table 1). Up to 51-97% of S_{HCl} was
384	extracted at pH 10 from the GB samples indicating that most of the S was associated with
385	the goethite surface. Overall, the poorly-crystalline, S-rich goethite was located near the
386	GB source; its crystallinity increased downstream while S content decreased.
387	The concentrations of S_{ox} and S_{HCl} in the schwertmannite-containing GB surface
388	samples [GB1D(0-0.15 m, May), GB2D(0-0.15m, May) and GB1 (July)] were close to
389	or slightly higher than those of the goethite-containing GB1 (February) and GB2
390	(February) samples, respectively, while S_{pH10} was 0.23-0.28 mmol/g lower (Table 1).
391	These results implied that there was little release of structural S during the
392	schwertmannite transformation, and that most of the S became surface-complexed.
393	Concentrations of extractable S from GB schwertmannite and goethite were in good
394	agreement with the laboratory study of Schwertmamm and Carlson (2005), where the
395	conversion of schwertmannite was shown to result in the adsorption of considerable
396	amounts of sulfate to the goethite surface. These authors hypothesized that sulfate
397	adsorption caused the spherical morphology of goethite.
398	In contrast to GB, the concentration of the oxalate-extractable Fe in the FR
399	samples averaged ~6.7 mmol/g and did not change significantly with distance from the
400	source or sampling time [FR1 (February and July)]. The Fe _{ox} /Fe _{HCl} ratio ranged from
401	85% to 94% because schwertmannite was the principal Fe(III) phase (Table 1). The
402	average chemical formula of schwertmannite obtained from the oxalate extraction data
403	was $Fe_8O_8(OH)_{5.56}(SO_4)_{1.22}$.

404 Vertical profiles at the GB1 (May) and GB2 (May) sites showed similar Fe and S
405 depth trends (Table 1). The oxalate extracted Fe decreased with depth, while Fe_{HCl}

406	slightly increased, indicating an increase in goethite crystallinity. Similar to the GB
407	(February) surface samples, the increase in crystallinity was accompanied by a drop in S
408	content. The vertical distribution therefore showed that mineralogical changes from
409	schwertmannite to goethite at GB1 (May) and GB2 (May) sites were accompanied by an
410	increase in goethite crystallinity concomitant with the depletion of sulfate. In the
411	sediment depth samples, 67-100% of S_{HCl} was extracted at pH 10, indicating that the
412	majority of S was surface bound to goethite and schwertmannite. The average chemical
413	formula of schwertmannite obtained from the oxalate extraction data of GB1 and GB2
414	depth samples was similar to the one found for the FR schwertmannite.
415	To summarize, the results of mineralogical analysis showed that schwertmannite
416	transformation occurred at GB site. Little release of sulfate occurred into aqueous
417	solution during the transformations and the initially formed goethite was poorly-
418	crystallized and rich in surface bound sulfate. The goethite had spherical morphology due
419	to preservation of schwertmannite structure by adsorbed sulfate. The poorly-crystallized
420	goethite was subject to further crystallization accompanied by S desorption to the
421	aqueous phase. Changes in surface speciation preceded sulfate desorption, with a
422	conversion from C_{2v} to C_{3v} symmetry. Further experimental study is however necessary
423	to evaluate the effect of the mineral transformation on water chemistry.
424	3.4. Sediment incubation
425	Incubation experiments were performed to study the influence of schwertmannite
426	transformation on AMD waters that differ in pH and composition (GB4w and GB6w,
427	Table S2). The pH values in all suspensions gradually decreased during incubation to
428	~2.2 (GB1 sediments) and ~1.9 (FR1 sediments) (Fig. 8). Unlike the suspensions with

429	GB4 water, for which no shift in the initial pH value was observed, mixing GB1 and FR1
430	sediments with GB6 water (initial $pH = 5.15$, Table S2) resulted in an immediate pH drop
431	from 5.15 to 2.9. When the aqueous phase was replaced in the GB1s_GB6w and
432	FR1_GB6w suspensions after approximately 100 d, the pH value still dropped to 2.9
433	within one day (Fig. 8, note arrows). The pH decrease was due to schwertmannite acidity
434	which made it a significant proton source (Bigham et al., 1996; Gagliano et al., 2004;
435	Murad and Rojik, 2005; Schwertmann and Carlson, 2005). Based on the average
436	schwertmannite composition of $Fe_8O_8(OH)_{5.56}(SO_4)_{1.22}$ determined by oxalate extraction
437	(Table 1), around 0.3 mol H^+ could be released per mole of Fe^{3+} upon hydrolysis to
438	goethite, a result that is in agreement with published data $[0.26-0.40 \text{ mol H}^+;(Bigham et M)]$
439	al., 1996; Kawano and Tomita, 2001; Peine et al., 2000)]. The decrease in pH was
440	accompanied by an increase in dissolved Fe and S (Fig. 8).
441	At the end of incubation, the Fe and S concentrations were lower in GB1
442	suspensions [11.61±0.12 mM and 10.76±0.78 mM S; 4.40±0.06 mM and 3.85±0.49 mM
443	Fe in the GB1s_GB4w and GB1s_GB6w, respectively] than in the FR1 suspensions
444	[37.61±1.05 mM and 40.51±0.29 mM S; 16.43±0.87 mM and 15.98±0.08 mM Fe in
445	FR1s_GB4w and FR1s_GB6w, respectively]. Regardless of differences in the initial
446	composition of GB4w and GB6w (Table S2), the final concentrations of Fe and S were of
447	comparable order of magnitude in suspensions of the same sediment (e.g., GB1s_GB4w
448	and GB1s_GB6w). Calculation of saturation indices revealed that all sediment
449	suspensions were undersaturated with respect to schwertmannite and supersaturated with
450	respect to goethite (Fig. 9). Thus, dissolution and/or transformation of schwertmannite

452	Mineralogical changes were significant in the GB1 and FR1 incubations, where
453	XRD analysis revealed that goethite was the principal Fe(III) mineral at experiment
454	termination (Fig. S3). The concentration of Feox began to decrease after approximately
455	128 d coincident with goethite crystallization (Fig. S4). We unexpectedly found that the
456	schwertmannite to goethite transformation occurred under laboratory conditions in FR1.
457	This observation contrasted with the XRD analysis of the FR sediments (May and
458	February) that revealed no significant goethite formation in FR sediments (Table 1). This
459	difference might be explained by different field and laboratory temperature and chemical
460	conditions, and the influence of AMD advection over and within the Fe(III) deposits. It is
461	possible that the rate of schwertmannite precipitation and accretion was faster than its
462	transformation into goethite at the FR site. Further laboratory and field studies are
463	required to resolve this interesting disparity.
464	The laboratory incubation experiments demonstrated that schwertmannite
465	dissolution and/or transformation controlled AMD water chemistry under no-flow, batch
466	conditions. AMD properties (acidity, dissolved S) are therefore regulated by two
467	important sources: (i) primary sulfide minerals (pyrite, pyrrhotite) and (ii) secondary
468	metastable $Fe(III)$ phases formed after Fe^{2+} oxidation.
469	
470	3.5. Environmental implications
471	Our results demonstrate an important relationship between mineralogical

4/1 Our results demonstrate an important relationship between mineralogical
472 transformations and the water composition of AMD. Conversion of schwertmannite to
473 goethite leads to decrease in pH and increase in the dissolved concentration of sulfate
474 (Fig. 10) as found in laboratory incubations of AMD sediments [this work; (Bigham et

475	al., 1996; Jönsson et al., 2005; Knorr and Blodau, 2007; Schwertmann et al., 1995)] and
476	in field conditions (Kumpulainen et al., 2007). At GB and FR sites, the noted pH
477	decrease from 4.1-4.5 (source) to 3.7-3.9 downhill (Fig. 1a,c) could, therefore, be
478	explained by Fe(II) oxidation to Fe(III) with subsequent precipitation (Senko et al., 2008)
479	and by conversion of secondary metastable Fe(III) phases (e.g., schwertmannite).
480	However, the dissolved S concentration in GB and FR systems does not change
481	significantly between sampling points (GB1-6, FR1-4) or sampling time (February and
482	May) (Fig. 1 b,d). Average concentrations of dissolved S were higher at FR (4.04±0.13
483	mM) than at GB (1.19±0.04 mM). Such uniform S concentrations over time and with
484	distance from the source may be explained by a low (as compared to flow) rate of S
485	release from Fe(III) solid phases and/or by reprecipitation of the released S in
486	schwertmannite (Fig. 10).
487	Other field measurements [such as, schwertmannite precipitation/accretion rate
488	and its transformation into goethite, rate of sulfate release from sediments, pore water
489	composition] are needed to fully interpret factors controlling AMD water and sediment
490	composition.
491	

493 Acknowledgements

We thank John Senko and Melanie Lucas (Pennsylvania State University) for providing
us with sediment and water samples. We are grateful to Tom Resch (PNNL) for thin
sections preparation. We thank Ravi Kukkadapu (PNNL) for valuable discussions on the
interpretation of AMD mineralogy data. XRD, SEM and FTIR analysis were performed

- 498 in the Environmental Molecular Sciences Laboratory (EMSL) that is managed and
- 499 supported by OBER-ERSD. PNNL is operated for the DOE by Battelle. This work was
- 500 partially supported by the National Science Foundation under Grant No. CHE-0431328
- and the U.S. Department of Energy, Biological and Environmental Research (BER).
- 502

References

504	Acero, P., Ayora, C., Torrento, C. and Nieto, J.M., 2006. The behavior of trace elements
505	during schwertmannite precipitation and subsequent transformation into goethite
506	and jarosite. Geochimica et Cosmochimica Acta, 70(16): 4130-4139.
507	Bigham, J.M. and Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid
508	sulfate waters. In: C.N. Alpers, J.L. Jambor and D.K. Nordstrom (Editors), Sulfate
509	minerals, crystallography, geochemistry and environmental significance. Reviews
510	in mineralogy and geochemistry, Mineralogical Society of America, Washington,
511	D.C., pp. 351-403.
512	Bigham, J.M., Schwertmann, U., Carlson, L. and Murad, E., 1990. A poorly crystallized
513	oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid-mine
514	waters. Geochimica et Cosmochimica Acta, 54(10): 2743-2758.
515	Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M., 1996.
516	Schwertmannite and the chemical modeling of iron in acid sulfate waters.
517	Geochimica et Cosmochimica Acta, 60(12): 2111-2121.
518	Boily, JF., Ilton, E.S., 2008. An independent confirmation of the correlation of Uf4
519	primar peaks and satellite structures of U^{VI} , U^{V} and U^{IV} in mixed valence uranium
520	oxides by two-dimensional correlation spectroscopy. Surface Sci. 602, 3637-
521	3646.
522	Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A. and Wagner, F., 2002.
523	Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a
524	comparison with synthetic analogues. Environmental Science and Technology,
525	36(8): 1712-1719.

526	Cornell, R.M. and Schwertmann, U., 2003. The iron oxides: structure, properties,							
527	reactions, occurrences and uses. Wiley-VCH, New York, 664 pp.							
528	Cravotta, C.A., 2008. Dissolved metals and associated constituents in abandoned coal-							
529	mine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent							
530	concentrations. Applied Geochemistry, 23(2): 203-226.							
531	Dold, B. and Fontbote, L., 2001. Element cycling and secondary mineralogy in porphyry							
532	copper tailings as a function of climate, primary mineralogy, and mineral							
533	processing. Journal of Geochemical Exploration, 74(1-3): 3-55.							
534	Espana, J.S., Pamo, E.L., Pastor, E.S., Andres, J.R. and Rubi, J.A.M., 2006. The removal							
535	of dissolved metals by hydroxysulphate precipitates during oxidation and							
536	neutralization of acid mine waters, Iberian Pyrite Belt. Aquatic Geochemistry,							
537	12(3): 269-298.							
538	Fukushi, K. et al., 2003. A natural attenuation of arsenic in drainage from an abandoned							
539	arsenic mine dump. Applied Geochemistry, 18(8): 1267-1278.							
540	Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S. and Traina, S.J., 2004. Chemistry							
541	and mineralogy of ochreous sediments in a constructed mine drainage wetland.							
542	Geochimica et Cosmochimica Acta, 68(9): 2119-2128.							
543	Hochella, M.F., Moore, J.N., Golla, U. and Putnis, A., 1999. A TEM study of samples							
544	from acid mine drainage systems: metal-mineral association with implications for							
545	transport. Geochimica et Cosmochimica Acta, 63(19-20): 3395-3406.							
546	Jönsson, J., Persson, P., Sjoberg, S. and Lovgren, L., 2005. Schwertmannite precipitated							
547	from acid mine drainage: phase transformation, sulphate release and surface							
548	properties. Applied Geochemistry, 20(1): 179-191.							

549	Kawano, M. and Tomita, K., 2001. Geochemical modeling of bacterially induced						
550	mineralization of schwertmannite and jarosite in sulfuric acid spring water.						
551	American Mineralogist, 86(10): 1156-1165.						
552	Knorr, K.H. and Blodau, C., 2007. Controls on schwertmannite transformation rates and						
553	products. Applied Geochemistry, 22(9): 2006-2015.						
554	Kumpulainen, S., Carlson, L. and Raisanen, M.L., 2007. Seasonal variations of ochreous						
555	precipitates in mine effluents in Finland. Applied Geochemistry, 22(4): 760-777.						
556	Majzlan, J. and Myneni, S.C.B., 2005. Speciation of iron and sulfate in acid waters:						
557	aqueous clusters to mineral precipitates. Environmental Science and Technology,						
558	39(1): 188-194.						
559	Malmstrom, M.E., Gleisner, M. and Herbert, R.B., 2006. Element discharge from pyritic						
560	mine tailings at limited oxygen availability in column experiments. Applied						
561	Geochemistry, 21(1): 184-202.						
562	Murad, E. and Rojik, P., 2005. Iron mineralogy of mine-drainage precipitates as						
563	environmental indicators: review of current concepts and a case study from the						
564	Sokolov Basin, Czech Republic. Clay Minerals, 40(4): 427-440.						
565	Noda, I. and Ozaki, Y., 2004. Two-dimensional correlation spectroscopy-applications in						
566	vibrational and optical spectroscopy. John Wiley and Sons, New York.						
567	Parkhurst, D.L. and Appelo, C.A.J., 1999. User's guide to PHREEQC (version 2)- a						
568	computer program for speciation, batch-reaction, one-dimentional transport, and						
569	inverse modeling. U.S. Geological Survey Water-Resources Investigations Report						
570	99-4259.						

571	Peak, D., Ford, R.G. and Sparks, D.L., 1999. An in situ ATR-FTIR investigation of							
572	sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science,							
573	218(1): 289-299.							
574	Peine, A., Tritschler, A., Kusel, K. and Peiffer, S., 2000. Electron flow in an iron-rich							
575	acidic sediment - evidence for an acidity-driven iron cycle. Limnology and							
576	Oceanography, 45(5): 1077-1087.							
577	Regenspurg, S., Brand, A. and Peiffer, S., 2004. Formation and stability of							
578	schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta,							
579	68(6): 1185-1197.							
580	Regenspurg, S. and Peiffer, S., 2005. Arsenate and chromate incorporation in							
581	schwertmannite. Applied Geochemistry, 20(6): 1226-1239.							
582	Schwertmann, U., Bigham, J.M. and Murad, E., 1995. The first occurrence of							
583	schwertmannite in a natural stream environment. European Journal of							
584	Mineralogy, 7(3): 547-552.							
585	Schwertmann, U. and Carlson, L., 2005. The pH-dependent transformation of							
586	schwertmannite to goethite at 25°C. Clay Minerals, 40(1): 63-66.							
587	Senko, J.M., Bruns, M.A. and Burgos, W.D., 2008. Characterization of Fe(II) oxidizing							
588	bacterial activities and communities at two acidic Appalachian coal mine							
589	drainage-impacted sites. submitted to The ISME Journal: Multidisciplinary							
590	Journal of Microbial Ecology.							
591	Sullivan, L.A. and Bush, R.T., 2004. Iron precipitate accumulations associated with							
592	waterways in drained coastal acid sulfate landscapes of eastern Australia. Marine							
593	and Freshwater Research, 55(7): 727-736.							

594	Yu, S.H., Colfen, H. and Antonietti, M., 2003. Polymer-controlled morphosynthesis and
595	mineralization of metal carbonate superstructures. Journal of Physical Chemistry
596	B, 107(30): 7396-7405.
597 598	

599 Figure captions

- 600 Fig. 1. Distributions of aquatic physico-chemical parameters as a function of distance
- from source: (a) and (b) GB; (c) and (d) FR.
- 602 Fig. 2. X-ray powder diffraction patterns of the GB sediment samples collected in
- 603 February and May: (a) GB1; (b) GB2; (c) GB3. gt-goethite, sh-schwertmannite.
- Fig. 3. X-ray powder diffraction patterns of the GB1D sediment samples collected atdifferent depths.
- Fig. 4. Scanning electron microscopy images of (a) and (b) GB1D (0-0.15 m) collected in
 May; (c) FR1, (d) FR4, (e) and (f) GB1 collected in February.
- 607 May; (c) FR1, (d) FR4, (e) and (f) GB1 collected in February.
- 608 Fig. 5. Scanning electron microscopy images of thin sections and corresponding EDS
- spectra of (a) GB1D (0-0.15 m) collected in May; (b) FR1 and (c) GB1 collected
 in February.
- 611 Fig. 6. FTIR spectra of (a) GB surface samples collected in February and (b) GB1D

612 sediment samples collected at different depths in May.

- 613 Fig. 7. FTIR spectra of (a) pure sulfate components resolved for synthetic
- schwertmannite (unpublished), (b) GB1D (0.35-0.55 m) and (c) asynchronous 2D
- 615 correlation map built from FTIR spectra shown in Fig. 6.
- 616 Fig. 8. Dissolved Fe, S and pH as a function of incubation time. Sediment suspensions
- 617 are (a) GB1s_GB4w; (b) GB1s_GB6w; (c) FR1s_GB4w; (d) FR1s_GB6w. Error
- bars show standard deviation (two replicates). Arrows denote time when aqueous
- 619 phase was replaced.
- 620 Fig. 9. Plots of $paFe^{3+}$ vs pH for the sediment suspensions. The solubility lines of
- 621 schwertmannite and goethite were calculated by Eqns. (4) and (5) for $pa_{SO42-} =$

622	2.84. Dotted lines are boundaries of the solubility window of schwertmannite.
623	Solubility products of schwertmannite and goethite were taken from Bigham et al
624	1995.
625	Fig. 10. Schematic of schwertmannite conversion to well-crystallized goethite based on
626	results of mineralogical analysis and laboratory incubation of AMD sediments.
627	
628	
629	
630	
631	

Table 1 Mineralogy of the GB and FR precipitates and concentrations of oxalate, 6 M

Sample	Location,	XRD	Feox	Fe _{HCl}	Sox	$\mathbf{S}_{\mathrm{HCl}}$	S _{pH10}
	m				mmol/g		
		surface	e sediments (c	collected in Fo	ebruary 2006)	
GB1	0	et	6.41±0.21	8.56±0.09	1.00±0.02	1.12±0.02	0.97±0.02
GB2	2	gt	7.91±0.28	8.43±0.29	1.26 ± 0.02	1.30 ± 0.04	1.04 ± 0.02
GB3	9	gt	5.62±0.33	9.13±0.27	0.65±0.02	0.74 ± 0.02	0.57±0.01
GB4	15	gt	5.23±0.14	9.05±0.08	0.62 ± 0.01	0.74 ± 0.01	0.55±0.01
GB5	60	gt, az	0.17±0.04	7.81±0.19	0.26±0.02	0.51±0.01	0.32±0.02
GB6	127	gt, qz	0.18±0.03	4.09 ± 0.08	0.08 ± 0.01	0.14 ± 0.01	0.08 ± 0.01
FR 1	0	ch	7 28+0 13	8 23+0 09	1 30+0 00	1 36+0 00	1 20 +0 01
FR2	2	sh	6 51+0 06	7.65+0.17	1.30 ± 0.00 1.19+0.00	1.30 ± 0.00 1.37+0.03	0.92 ± 0.01
FR3	8	sh	6 76+0 72	7.03±0.17	1.17 ± 0.00 1 27+0 05	1.37 ± 0.03 1 43+0 01	0.92 ± 0.02 0.85±0.01
FR4	10	sh ot	6.94 ± 0.55	7.36+0.15	1.27 ± 0.03 1 20+0 02	1.43 ± 0.01 1 37+0 03	1.22 ± 0.01
11(1	10	sh, gt	0.91=0.55	(11) 1	1.20=0.02	1.57=0.05	1.22=0.05
		surfa	ce sediments	(collected in	July 2006)		
GB1	0	sh, gt	6.81±0.34	7.20±0.29	1.32 ± 0.09	1.42 ± 0.06	0.69 ± 0.02
FR1	0	sh, gt	6.68±0.16	6.89±0.14	1.40±0.13	1.40 ± 0.11	0.83 ± 0.04
		vert	tical profiles ((collected in l	May 2006)		
GB1D	0-0.15	sh, gt	5.05±0.13	8.15±0.18	0.95±0.02	1.03±0.00	0.74±0.01
GB1D	0.15-0.3	sh, gt	7.22±0.11	8.34±0.12	0.95 ± 0.00	1.07 ± 0.00	0.68 ± 0.01
GB1D	0.35-0.55	gt, sh	6.24±0.20	8.56±0.25	0.72 ± 0.01	0.81 ± 0.01	0.61±0.02
GB1D	0.6-0.8	gt	5.17±0.23	9.07±0.14	$0.52{\pm}0.01$	0.63 ± 0.00	0.57±0.01
GB1D	0.9-1.1	gt	3.49±0.13	9.53±0.22	0.31 ± 0.01	0.42 ± 0.01	0.35±0.01
GR2D	0.0.15	sh	7 26+0 41	7 76±0 22	1 18+0 03	1 32+0.00	0.79+0.02
GB2D	0.15.0.5	sh at	7.20 ± 0.41 7.60±0.37	7.70 ± 0.22	1.13 ± 0.03 1.12 ±0.01	1.32 ± 0.00 1.10±0.01	0.79 ± 0.02 0.77 ±0.01
GB2D	0.13-0.3	sii, gi	7.09 ± 0.37 2.52 ±0.07	7.99 ± 0.03 9.01+0.12	1.12 ± 0.01 0.36±0.00	1.19 ± 0.01 0.46±0.03	0.77 ± 0.01 0.37±0.01
0D2D	0.0-0.0	gı	2.32-0.07	9.01-0.12	0.30±0.00	0.40±0.03	0.3/±0.01
GB3D	0-0.15	gt	2.27±0.06	9.66±0.14	0.40±0.01	0.54±0.02	0.41 ± 0.01
GB3D	0.2-0.4	gt	2.72±0.14	9.27±0.21	0.42 ± 0.00	0.51±0.00	0.40 ± 0.14
GB3D	0.4-0.6	gt	2.80±0.11	8.32±0.22	0.37 ± 0.01	0.45 ± 0.02	0.40 ± 0.01
GB3D	0.6-0.8	gt	2.42 ± 0.07	8.64±0.45	0.37±0.00	0.45 ± 0.01	0.41 ± 0.01

HCl and pH 10 extracted Fe and S.

*used in incubation experiments. gt-goethite, sh-schwertmannite and qz-quartz.

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

Fig. 7.

Fig. 8.

